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Abstract

Link prediction appears as a central problem of network science, as
it calls for unfolding the mechanisms that govern the micro-dynamics
of the network. In this work, we are interested in ego-networks, that is
the mere information of interactions of a node to its neighbors, in the
context of social relationships. As the structural information is very
poor, we rely on another source of information to predict links among
egos’ neighbors: the timing of interactions. We define several features
to capture different kinds of temporal information and apply machine
learning methods to combine these various features and improve the
quality of the prediction. We demonstrate the efficiency of this tempo-
ral approach on a cellphone interaction dataset, pointing out features
which prove themselves to perform well in this context, in particular
the temporal profile of interactions and elapsed time between contacts.
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1 Introduction
In recent years, networks have become a ubiquitous way of representing any
kind of interacting systems ranging from metabolic protein interactions to
online social networks. This trend is justified by the simplicity of the repre-
sentation, combined with the technical possibility of storing and processing
large-scale datasets. In most cases though, the observer only has a partial
view of the network, and achieving a comprehensive mapping of the interac-
tions is often a challenging task. Big data collection campaigns have been
set in various fields, notably biological networks, or Internet mapping, but
collecting large amounts of data remains expensive in both space and time.
In addition to that cost, metrological problems may bias the crawling process
and compromise the reliability of the data. When it comes to social data,
the problem often originates in the traditional data collection methods, which
are not suited for large-scale analysis, such as individual surveys. Online so-
cial networks allow to access larger datasets, however, data providers often
restrict the access to their resources for commercial, technical or legal rea-
sons. Similarly, even private companies, for instance mobile phone operators,
have a restricted view of a social system, as they only have full information
about their clients and are blind to the connections between clients of other
companies.

Analyzing local structures in networks consequently appears as a possible
way to circumvent these issues. In sociology, ego-centered networks have been
studied for a long time [1] and measures have been proposed to describe
and understand the local structural environments around specific nodes [2,
3]. More recently, the question of how to adequately define the notion of
community in this context has been an important focus of interest [4, 5, 6].
In this work, we consider the following problem: knowing the interactions
of a node with its direct neighbors, can we guess if there are existing links
between these neighbors? In other words, “among someone’s friends, who
are likely to know each other?” This is a typical link prediction problem,
but in this case structural information about the network is lacking. Hence,
we resort to other sources namely temporal information, to discover links
between nodes of a social network.

The link prediction problem in networks is often formulated as inferring
which links may appear or not in the future from the observed structure of the
network, see for example [7]. This can be formulated as a machine learning
task using learning features, which are related to the probability for a node
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to appear. Structural features are often used to that purpose, for example
the number of common neighbors, hitting time etc. There are many available
metrics which can be found in surveys [8]. Other kinds of features are also
available, such as node-level attributes [9], or interaction-level attributes [10].
When considering link prediction in social networks, one should mention the
class imbalance problem: a sparse network implies the fact that there are
much more pairs of nodes than actual links. It implies that there is a high
risk of misclassification by increasing the number of predictions. Efforts have
been made to alleviate this acute problem, in particular, by using supervised
learning techniques that allow to group pairs of nodes in categories for link
prediction and, therefore, reduce the imbalance effect [11].

Interaction dynamics is also a valuable source of information. For ex-
ample, it is known that the pace and length of communications give clues
about the type of relationship involved: family, commercial, friendship, etc
[12]. Several works exploited this for link prediction-related purposes using
pattern frequencies to infer which interactions are most likely in the near
future [13, 14], or predicting link decay from the measure of the elapsed time
since the last interaction [15]. In other contexts, temporal information was
also incorporated in order to predict transitions between venues in cities [16].
In this work, our goal is to extract information from the interaction dynamics
to reveal existing links in ego-centered social networks. Considering a phone
call dataset, where a link represents the existence of a social interaction be-
tween two users, the scenario is that we only have local information on the
interaction network of specific nodes. It is then a minimal version of the ego-
network, as it involves the node and its direct neighbors1. There is very little
structural information available and hence, we use temporal information to
rank pairs among the neighbors of an ego node. A high-ranked pair should
feature nodes of the same social circle, which are prone to interact with each
other. We also aim at point out temporal features, which are particularly
informative in predicting links.

We design several types of features from the timing of interactions. Then
we tackle the problem as a ranking combination issue. Each feature provides
us with a ranking, which indicates pairs of neighbors likely to be connected.
Following a strategy similar to [17], we combine these rankings in a supervised
framework to draw as much information as possible from these features, so

1Note that in other contexts, some authors refer to the ego-network as the links of an
ego to its neighbors and the connections among them.
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that the resulting ranking should rank high the pairs which are most likely
to be connected. We first use traditional classification methods to do so, as
given in [7] or [11], and show their limits as the number of predictions cannot
be set according to our needs. For this purpose, we use the learning-to-rank
framework in [18], especially designed for link prediction in large networks.
The benefit of using learning-to-rank instead of classification methods is that
we predict exactly T links by considering the top-T pairs of our ranking.

We describe in Section 2 the phone call and text messages dataset under
examination in this article. Then, in Section 3 we expose how the tempo-
rality of interactions can be used for predicting links in such datasets. After
describing the protocol of evaluation and the static benchmark that will be
used for comparison, we propose temporal features which aim at guessing
links among the neighbors of ego nodes. We explain how these features are
used in order to obtain rankings, where highly-ranked pairs are more likely
to be connected. In Section 4, we propose supervised strategies to combine
these rankings in order to obtain the best possible predictions, classification,
as well as learning to rank techniques.

2 Dataset

2.1 Preprocessing

The dataset under examination is a collection of communications made among
a subset of anonymized subscribers to a european cellphone service provider.
It contains around 14.3 · 106 calls and 28.8 · 106 text messages made be-
tween any pair of users in the dataset during a one-month period. Hence-
forth, we make the distinction between calls and text messages, because we
assume that these means of communication are not used for the same pur-
poses by the same people. Calls can be represented as a list of quadruplets,
{source, destination, timestamp, duration}. Calls with null duration, corre-
sponding to unanswered phone calls, have been filtered out of the dataset.
Text messages are stored as triplets, {source, destination, timestamp}.

The usual network representation of such data consists in describing users
as nodes and the existence of at least one interaction between two users as
a link. These links may be assigned a certain direction depending on who
is calling/texting whom. The total number of interactions (either calls or
messages) between two nodes i and j during the whole record period will be
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referred to as the weight, w(i, j), of this link.
As we are interested in the social groups underlying the communication

network, we filter out calls and text messages which are not indicative of a
lasting social relationship. We only consider calls on bidirectional links, that
is to say links which have been activated in both directions [19]. Except for
this step, interactions between users are considered as undirected. The data
comes down to 1,241,865 nodes, and 1,514,490 links – indifferently call or
message links – corresponding to 10,934,277 phonecalls and 27,060,340 text
messages after preprocessing.

From now on, the network is regarded as a set of isolated ego-networks,
that is to say the interactions between a central node and its direct neighbors.
Nodes have heterogeneously distributed degrees and weights regarding both
phonecalls and text messages, see Figure 1. It is known that the prediction
quality depends on the degree of the central node as underlined in [20]. Typi-
cally it is less efficient on low degree nodes because of the lack of information.
We, therefore, group nodes together into degree classes. The learning process
will be made on each of these sets separately to improve performances.

10
0

10
1

10
2

10
3

10
4

10
5

 1  10  100  1000  10000

Activity W

10
0

10
2

10
4

10
6

 1  10  100

Degree k

10
0

10
1

10
2

10
3

10
4

10
5

 1  10  100  1000  10000  100000

Activity W

10
0

10
2

10
4

10
6

 1  10  100  1000

Degree k

Figure 1: Activity and degree (inset) distributions in the dataset, for both
phonecalls (left) and text messaging (right) networks.

2.2 Ego-networks specificities

We consider a scenario where the only information available is the timing
(and duration for calls) of interactions of a node to its neighbors, the in-
formation about the network structure is poor. The temporal patterns of
these interactions bear the trace of underlying social circles, and as such
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they enable us to predict the links existing in the neighborhood of the ego
node. Former works have stressed the dramatic effect of class imbalance on
link prediction problems in social networks, especially in mobile phone net-
works ([11, 20]). The fact that there are much more pairs of nodes than links
in the network makes the prediction and its evaluation tricky. The typical
order of magnitude of the classes ratio for a network of N nodes is O(1/N).
However, in case of ego-networks, the class-imbalance effect is less of a prob-
lem, since the neighbors of a degree k node have at most k(k − 1)/2 links
among themselves. A direct consequence of the lack of structural informa-
tion present in ego-networks is that standard algorithms, for instance based
on common neighbors, are unable to predict links between two nodes better
than purely random predictions.

3 Prediction based on temporal information
In this section, we present the protocol used to evaluate how the temporal
information improves the quality of link prediction among the neighbors of
an ego node. For this purpose, we define metrics that allow to rank pairs of
nodes, where the highest ranked pairs are the most likely to be connected.

3.1 Protocol and prediction evaluation

For each degree class k, that is the degree of the ego node, we divide ego-
networks in three sets according to the following proportions: learning set
(60%), validation set (20%) and test set (20%). If there are N egos in a set,
we rank the N ·k·(k−1)/2 pairs of neighbors in the union of the ego-networks.
The presence or absence of a link between two neighbors in the learning set
is supposed to be known and will be used during the learning phase of the
protocol, while the performance of the whole procedure is evaluated on the
test set. The validation set will be used to fix the parameters of the prediction
method as discussed later.

The process is then divided into two parts, an unsupervised ranking part
followed by a supervised aggregation of rankings. During the first part, pairs
of nodes are ranked according to a metric m. m is chosen to be corre-
lated with the probability of existence of a link between neighbors. We also
use consensus-based strategies to obtain rankings combined from the metric-
based rankings. The quality of the various rankings produced is assessed by
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measuring the numbers of true and false positive predictions on the top pairs
and usual related quantities, namely precision (Pr), recall (Rc) and F-score.
Let us remind that the F-score is defined as 2·Pr·Rc

Pr+Rc
. In the line of [21], we use

precision-recall curves to visualize the performances of the prediction. We
also plot F-scores as a function of the number of predictions, as this quantity
is proportional to the number of true positive for a given number of predic-
tions. Then we mix the rankings following supervised learning methods to
obtain a prediction as accurate as possible on the various degree classes.

3.2 Static benchmarks

The quality evaluation is made by comparison to benchmarks, which rely on
the basic structural information. For the comparison to be as fair as possible,
we test a few ranking metrics and keep the most efficient one. Each pair of
neighbors (i, j) of ego e, with degree k(e) and total weight W (e) = Σiw(e, i),
is given a score s(i, j) depending on the weights w(e, i) and w(e, j), which
is the only structural information available here2. The static benchmark
metrics are:

• s1(i, j) = w(e, i) · w(e, j)

• s2(i, j) = w(e, i) + w(e, j)

• s3(i, j) = max(w(e, i), w(e, j))

• s4(i, j) = w(e, i) · w(e, j)/k(e)

• s5(i, j) = w(e, i) · w(e, j)/W (e)

Figure 2 depicts the results of drawing randomly 1000 egos with k ≥ 10
from the learning set of the phonecall network. It can be seen that s1, s4 and
s5 clearly outperform the two other metrics and the precision of s5 is better
for low recall predictions. This observation stands using other samples and
other classes. Therefore, s5 is used as the static benchmark of reference in
the text that follows.

2Note that by convention, the pair (i, j) of neighbors of ego e is considered distinct
from the pair (i, j) of neighbors of e′. Hence, there are duplicates among the ranked pairs
which may predicted twice, but this event is rare as it concerns less than 1 pair over 1000
and have practically no impact on the prediction.
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Figure 2: Performance comparison between structural benchmarks, using
precision vs recall and F-score (inset). Degree class: k ≥ 10 on the phonecall
network, learning set.

3.3 Metrics using temporal information

We aim at drawing as much information as possible from the temporal com-
munication patterns of an ego to its neighborhood. For this purpose we define
weak classification metrics, which are complementary to each other as they
use either different types of approaches or different timescales.

3.3.1 Link strength metrics

The first approach assumes that if there are strong links between e and i, and
e and j, then i and j are more likely to be connected. A straightforward way
to measure the strength of a relationship is the total duration of phonecalls.
If ∆(e, i) is the total duration of phonecalls between e and i, then we define
the duration score as

sdur(i, j) =
∆(e, i) ·∆(e, j)

(
∑

k ∆(e, k))2
.

Strength may be measured in other ways, such as using the regularity of
a relationship. We can indeed expect that someone calls his or her relatives
not necessarily often nor for a long time, but on a regular basis (every day
or week for example). We define the regularity γ(e, i) of a relationship as
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w(e, i) divided by the Fano factor F (e, i) of the inter-event time series. Let
us recall that the Fano factor of a distribution is the ratio of its variance over
its mean. More regular signals are characterized by lower values of F and,
therefore, a higher value of γ(e, i). For γ(e, i) to be defined, we demand that
there are at least two inter-event times in the time series (that is at least 3
interactions). The regularity score is then defined as

sreg(i, j) = γ(e, i) · γ(e, j).

In Figures 3 and 4, we show the precision and recall improvements com-
pared to the benchmark s5, obtained respectively with the duration and
regularity metrics. Note that precision and recall improvements are equal for
a fixed number of predictions. Different degree classes are considered and it
can be seen that there is an improvement to the benchmark in all cases ex-
cept for k = 12 with duration, where it is low or even negative. In the case of
the regularity metric, the improvement is spectacular for the first predictions
but falls quickly to negligible values. Considering duration, the improvement
is not as high for the first few predictions but remains significant on a large
range of predictions.
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Figure 3: Precision and recall improvements using the duration metric (on
phonecalls, learning set) compared to s5 benchmark for several degree classes.
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Figure 4: Precision and recall improvements using the regularity metric (on
phonecalls, learning set) compared to s5 benchmark for several degree classes.

3.3.2 Temporal profile approach

Depending on the moment of the day, week, or year, people use cellphones
with different purposes. For example, co-workers call each other more often
during working days than during the week-end. We, therefore, expect that
the calling frequencies give clues about the underlying social groups. This
should reflect on temporal profiles as is shown in the example in Figure 5.

We implement this idea in the following way. We divide the timeline T in
two sets of timestamps TA and TB, and count the number of interactions dur-
ing both periods by defining a 2-dimensional weight vector, (wA(e, i);wB(e, i)).
Assuming that pairs of nodes interacting with the central ego in a similar way
are more prone to be connected, the score of the pair (i, j) is then computed
from the scalar product of these weight vectors:

spr(i, j) =
(wA(e, i) · wA(e, j) + wB(e, i) · wB(e, j))

W (e)
.

Notice that spr = s5 for TA = T and TB = ∅.
We use the following profile scores in the rest of the study:

• spr−1 for a partition according to days of the week: Monday to Friday
vs Saturday to Sunday,
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e−i

e−j

e−k

Figure 5: Example of temporal profiles of interactions between ego e and
neighbors i, j, k: a spike represents a phonecall. The similarity of profiles
indicates that i and j may be part of the same social circle, while k is probably
not.

• spr−2 for a partition according to hours of the day: 8am to 6pm vs 6pm
to 8am,

• spr−3 for another partition according to hours of the day: 0am to 6pm
vs 6pm to 0am,

In Figure 6 we summarize the precision and recall improvements com-
pared to the benchmark s5 obtained for different degree classes with profile
1, where the timeline is partitioned between week days and week-end. It
reveals that spr−1 performs much better than the benchmark, reaching up to
a 67%, 69%, 66% and 100% enhancement for classes k = 3, k = 6, k = 9
and k = 12 respectively. Notice that the best improvements are obtained
on the top-ranked pairs, which will be used in the aggregation we develop in
Section 4.4.

Of course, we can look for refined partitions of the timeline with more
groups, more precisely defined boundaries, or even overlapping categories.
However, we take a different approach here by combining several weak clas-
sifying features to obtain a good ranking.
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Figure 6: Precision and recall improvements using the temporal profile ap-
proach (score spr−1 on phonecalls, learning set) compared to s5 benchmark
for several degree classes.

3.3.3 Elapsed time approach

When taking part in a social event, an individual has a high probability to
call or to be called in a short period by several participants, for example,
to set up a meeting point. More generally, the elapsed time between calls
may be an indication of a relationship between the users involved in both
phonecalls. That is why specific temporal patterns are found more often in
phonecall networks than what is expected from randomized models (see [22,
23]). Such correlations appear at various timescales. For example, defining
a meeting point may involve several phonecalls within a few minutes, while
the organization of a week-end may appear by examining patterns spreading
over several hours or even days.

In order to account for this mechanism, we define a ranking score that
takes into account the fact that an interaction between i and e took place
not long before or after an interaction between j and e. To do so, we define
the pair score as a function of parameter d

sd(i, j) =
∑
ti,tj

H[d− (tj − ti)]/W (e),

where tk is an interaction timestamp between e and k, and H is the Heav-
iside function. In other words, each pair of interactions (e − i, e − j) hap-
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pening in a time shorter than d increases the score of the pair (i, j). This
idea is represented schematically in Figure 7. Note that sd=∞ = s5, as
lim
d→∞

∑
ti,tj

H[d− (tj − ti)] = w(e, i) · w(e, j).

e−i

e−j

e−k

d

Figure 7: The time elapsed between e − i and e − j interactions is shorter
than d, while it is not the case for e−i and e−k. We assume that it indicates
a higher probability for i and j than for i and k to be part of the same social
circle.

Figure 8 shows results obtained for sd=1h, sd=24h and sd=168h, correspond-
ing respectively to a 1 hour, 1 day and 1 week time between phone calls for
the degree class k = 12. Here too, we see that there is a significant enhance-
ment to the benchmark, and that the precision improvement curves are not
equal for the different elapsed time parameters, meaning that different time
scales bring different information. We will, therefore, combine the informa-
tion brought by the various rankings to improve the quality of the predictions
in the study that follows.

4 Combining different predictors
The ranking methods presented in the former section use temporal informa-
tion in complementary ways. That is, we do not communicate in the same
fashion with our family, friends, co-workers, etc. Hence, a link detected as
likely using a specific ranking method may not be discovered using another.
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Figure 8: Precision and recall improvements using the time elapsed approach
(on phonecalls, learning set) compared to s5 benchmark for d = 1 hour, 1
day or 1 week.

In this section, we explore the possibility to combine the different rankings
in order to obtain the best possible prediction.

4.1 Feature selection and ranking correlations

In the rest of our study, we use the 18 rankings corresponding to the fol-
lowing scores: s5, sphonedur , sphonereg , stextreg , s

phone
d=1h , s

phone
d=3h , s

phone
d=24h, s

phone
d=168h, s

text
d=1h,

stextd=3h, stextd=24h, stextd=168h, s
phone
pr−1 , s

phone
pr−2 , s

phone
pr−3 , stextpr−1, stextpr−2, stextpr−3. To support

the idea that different rankings bring different information, we measure the
correlation between these 18 rankings and represent in Figure 9 the Spear-
man correlation coefficient matrix between rankings in the case of degree
class k = 12. Correlations for other degree classes look similar, but are
not reported here for the sake of brevity. We observe that correlations are
heterogeneous. For example stextreg is lowly correlated to all other rankings,
whereas s5 is quite highly correlated to a majority of rankings. Groups of
metrics can be distinguished based on the correlation matrix, while sphonedur ,
sphonereg and stextreg are relatively independent from the others. The profile-based
classifiers of Section 3.3.2 are on average highly correlated and the same can
be said for the elapsed time-based classifiers of Section 3.3.3, as is expected.
We also notice that these two groups can be divided into two subgroups,
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corresponding respectively to phone and text-messages classifiers.
On the whole, it appears that some pairs of nodes are ranked high accord-

ing to a classifier, but not by all others. In the following study, we present
ways to draw benefit from the complementarity of these scores.

Figure 9: Spearman correlation coefficients between rankings. Ranking are
ordered according to the following scores (left to right, up to bottom).
Benchmark: s5, duration based: sphonedur , regularity based: sphonereg , stextreg ,
elapsed time based: sphoned=1h , s

phone
d=3h , s

phone
d=24h, s

phone
d=168h, s

text
d=1h, stextd=3h, stextd=24h, stextd=168h,

profile-based: sphonepr−1 , s
phone
pr−2 , s

phone
pr−3 , stextpr−1, stextpr−2, stextpr−3.

4.2 Unsupervised consensus methods

We describe here unsupervised techniques used to merge rankings based on
social choice theory [24]. These methods are consensus-based. They rely
on the assumption that every ranking provides a reasonable solution to the
problem and combine rankings by giving to each of them an equal weight.

4.2.1 Borda’s method

Borda’s method is a rank-then-combine method, originally proposed to obtain
a consensus in a voting system [25]. We use the index κ to refer to a specific
ranking among the α rankings combined. Hence, rκ(i, j) denotes the rank of
pair (i, j) according to this ranking, and |rκ| denotes the number of elements
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ranked in rκ. Each pair is given a score corresponding to the sum of the
number of pairs ranked below, that is to say

sB(i, j) =
α∑
κ=1

|rκ| − rκ(i, j).

This scoring system may be biased by the fact that some rankings fea-
ture less elements than others. To alleviate this problem, unranked pairs
in ranking rκ, but ranked in rκ′ will be considered as ranked in rκ on an
equal footing as any other unranked pair, and below all ranked pairs of rκ.
Borda’s method is computationally cheap (linear in the ranking size), which
is a highly desirable property in our case, where many items are ranked. A
comprehensive discussion of this method can be found in [24].

4.2.2 Medrank

Borda can be described as building the ranking by averaging the rankings
combined. Another possibility is to look for the median of the rankings.
The output, that is to say the combined ranking, is initially empty and built
iteratively in the following way. At step n of the algorithm, the user register
which pairs are ranked in position n of every ranking and how many times
each pair has been seen until then. As soon as a pair (i, j) has been seen in
half (or more) of the number of rankings it belongs to, it is appended to the
list representing the combined ranking. Going through all rankings from top
to bottom simultaneously, we obtain a ranking which can be interpreted as
the median ranking of the input rankings. This consensus method is called
Medrank [26], and it is also linear in terms of computational complexity.

4.3 Classical Supervised classification methods

Another class of merging techniques proceeds in a supervised way. Let us first
introduce traditional classification methods. The rankings obtained with un-
supervised methods on the learning set are the scores used as input features.
Then the link prediction issue is considered as a two-classes classification
problem: the model trained on the learning set is applied on the test set to
estimate if a link does exist or not.

For this purpose we used three different methods: Classification Trees,
AdaBoost and k-Nearest Neighbors, as documented in the python toolkit
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scikit-learn3. One of the drawbacks of these methods is that the operator
cannot set the number of predictions. We, therefore, explore a small part of
the precision-recall space using the parameters of the method.

The results obtained are displayed in Figure 10, they show that these
methods are efficient to make high precision and low recall predictions (espe-
cially AdaBoost), clearly outperforming the static benchmark s5. They are
nonetheless inappropriate to make effective predictions over a large range of
the precision-recall space.

4.4 Supervised learning-to-rank methods

Finally, we use RankMerging, a supervised machine learning framework [18],
recently developed to aggregate information from various ranking techniques,
in a way that is suited to link prediction. Here we do not describe the
algorithm in details and only focus on the points which are important for this
study. Notice that other learning-to-rank techniques could be used following
the same scheme, but our framework is built for such situations with many
ranked items as it is computationally linear. Moreover, it does not demand
for a pair to be highly ranked according to all criteria, but at least one,
which we believe is appropriate in the context of link prediction in a social
network. Finally, it allows to investigate which features contribute to the
final ranking and thereby, giving indications about the information sources
which are important.

According to our framework, we first create the 20 rankings defined in the
former parts (18 unsupervised score-based rankings plus Borda and Medrank)
on each of the three sets (learning, validation and test). Then we evaluate
during the learning phase the coefficients that compute the contribution of
each of these rankings to the merged ranking on the labelled learning set to
optimize the quality of the prediction. In more details, to create a combined
ranking of length n, we learn the fraction φκ of pairs which are extracted
from each input ranking rκ. φκ coefficients are computed to maximize the
quality of the prediction on the learning set. The closer φκ is to 1, the heavier
the weight of ranking rκ in the merging process. The only parameter of the
method (called g in [18]) is fixed on the cross-validation set to get the best
prediction quality. Finally, the performance of the whole process is evaluated
by measuring the improvement of the prediction on the test set, compared

3http://scikit-learn.org/
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Figure 10: Left to right, top to bottom: k = 2, k = 4, k = 6, k = 8, k = 10,
k = 12. Main plots: precision vs recall. Insets: F scores against the number
of predictions. Blue circles correspond to Classification Tree (CT) results,
purple triangles to AdaBoost (AB) and green squares to k Nearest Neighbors
(kNN).

to the static benchmark defined in Section 3.2. The performance will be
measured using the area under the curve in the precision-recall space.

Results of RankMerging on the test set are displayed in Figure 10 and Ta-
ble 1, degree class per degree class. In general, predictions are more accurate
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for low-degree than for high-degree classes, which is a consequence of the fact
that the clustering coefficient in a phonecall network is higher for low-degree
nodes [27]. Hence, it should be easier to target connected pairs. However,
the improvement to s5 benchmark is higher for high degree-classes. It is
well-known that the higher the degree of an ego, the higher its activity [28],
so that we have access to a richer temporal information on high-degree ego
networks to improve the predictions.

Table 1: Improvement to benchmark s5 of the area under the curve in the
precision-recall space.

Ego degree Pr-Rc
class improvement
k = 2 + 15.5%
k = 3 + 18.8%
k = 4 + 19.3%
k = 5 + 21.4%
k = 6 + 22.3%
k = 7 + 22.5%
k = 8 + 25.5%
k = 9 + 25.5%
k = 10 + 28.1%
k = 11 + 30.9%
k = 12 + 26.4%
k = 13 + 33.1%
k = 14 + 36.2%
k ≥ 15 + 51.6%

4.5 Contribution of rankings and discussion

We want to measure the contribution of each ranking to the merged ranking
in order to evaluate its weight in the aggregation process. RankMerging
allows to do so by indicating how many pairs of each ranking has been taken
into account to create the merged ranking (for more details see [18]). A
number of pairs close to the number of predictions therefore indicates that
a ranking has a heavy weight in the merging process. We show in Figure 11
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the contribution of each group of rankings to the process in the case of degree
class k = 8.
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Figure 11: Contributions of each ranking to the merged ranking, class k = 8.

We display a refined analysis on the elapsed time-based and profile-based
predictions in Figure 12 to have an idea of the contribution of each profile
(resp. elapsed time) within each category.

Several trends can be seen in these graphs as mentioned below.

• Some classifiers are very little explored or even not used at all during the
process probably because the information that they bring is redundant
with other classifiers. This is the case of sphonereg , stextreg , and sdur on this
specific example.

• During the first steps the rankings used are mostly profile-based and
elapsed time-based. As the first predictions correspond to the highest
scores, these steps correspond to high precision and low recall, that is
the top-ranked items of the merged ranking. It means that these two
sets of features may be considered as informative time-based predictors
on this dataset.

• A more thorough observation reveals that the information brought by
phone calls is used more for the first predictions while text messages
are used later in the process. More precisely, the most used ranking
during the first steps is related to the phonecall, elapsed time-based
score.
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Figure 12: Contributions of each ranking to the merged ranking. Top left:
phonecalls profile-based, top right: text messages profile-based, bottom left:
phonecalls elpased time-based, bottom right: text messages elapsed time-
based.

• Borda and Medrank are used during the whole process, which could be
expected as these methods are designed to be an average or a median
of all the others. In our case it seems that Borda’s aggregation is much
more informative than Medrank.

Notice that the class k = 8 was taken as an example of a typical behaviour.
There are quantitative variations from a class to another. However, the
trends identified previously remain true with the other classes.

The fact that a ranking is used early in the process tends to prove that
the information that it brings is relevant for link prediction. From this ob-
servation, we suggest several conclusions related to the social meaning of our
experiments. First, the most efficient classifier is the time elapsed between
interactions, especially phone calls. It seems indeed that calls separated by
less than a few hours have a significant probability to involve members of
the same social circle. On the other hand, regularity-based classifiers proved
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themselves inefficient when aggregated. Very regular interactions are prob-
ably too rare to allow the identification of a large number of social circles
where it is a standard communication pattern. The duration based classifier
brings little improvement to the prediction too. However, the cause may be
different as duration score is quite highly correlated to other scores, while
regularity is not. We suggest that duration is ignored during the combina-
tion process because it brings redundant information. Finally, profile-based
predictors appear as moderately efficient. But interestingly, they seem com-
plementary with the elapsed time-based predictors. A possible interpretation
is that there are social circles where people call or send messages according
to a certain schedule, and others where interactions are rather triggered by
other interactions. This conclusion is of course hypothetical and calls for
additional investigation.

5 Conclusion
In this article, we explored how it is possible to infer links in ego-networks,
where the only information available is the timing of interactions of ego to
its neighbors. We proposed several ways of extracting information from the
temporal communication patterns and showed that they can largely improve
predictions when compared to a prediction based on the static information
available - that is to say the weights of interactions. More precisely, it seems
that profiling interactions based on when ego communicates with other users
and measuring the elapsed time between interactions are two particularly
efficient techniques to infer which of ego’s neighbors are likely to interact.
Our study also supports that depending on the kind of social relationship,
communication modes vary, as we observed that different features as well as
different time-scales reveal different links. We took advantage of this for link
prediction by using a learning-to-rank framework that may rank high items
even if some features do not rank them high.

We studied a case, where structural information is minimal and therefore,
isolating how the temporal features that we defined improved the prediction.
However, this temporal-based approach can be advantageous even if we have
richer information on the network since it provides additional sources of in-
formation for link inference. It could for example be used to predict future
interactions. Knowing the current state of a social network as well as the dy-
namics of existing interactions, it would improve our knowledge of the active
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social circles and potential new interactions.
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