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Abstract

Listing triangles is a fundamental graph problem with
many applications, and large graphs require fast algo-
rithms. Vertex ordering allows the orientation of edges
from lower to higher vertex indices, and state-of-the-art
triangle listing algorithms use this to accelerate their ex-
ecution and to bound their time complexity. Yet, only
basic orderings have been tested. In this paper, we show
that studying the precise cost of algorithms instead of
their bounded complexity leads to faster solutions. We
introduce cost functions that link ordering properties
with the running time of a given algorithm. We prove
that their minimization is NP-hard and propose heuris-
tics to obtain new orderings with different trade-offs be-
tween cost reduction and ordering time. Using datasets
with up to two billion edges, we show that our heuristics
accelerate the listing of triangles by an average of 38%
when the ordering is already given as an input, and 16%
when the ordering time is included.

1 Introduction

1.1 Context and problem statement. Small con-
nected subgraphs are key to identifying families of real-
world networks [24] and are used for descriptive or pre-
dictive purposes in various fields such as biology [32, 26],
linguistics [6] or engineering [34]. In sociology in par-
ticular, characterizing networks with specific structural
patterns has been a focus of interest for a long time, as it
is even present in the works of early 20th century sociolo-
gists such as Simmel [30]. Consequently, it is a common
practice in social network analysis to describe interac-
tions between individuals using local patterns [15, 36].
Recently, the ability to count and list small size patterns
efficiently allowed the characterization of various types
of social networks on a large scale [10, 8]. In particular,
listing elementary motifs such as triangles and 3-motifs
is a stepping stone in the analysis of the structure of net-
works and their dynamics [14]. For instance, the closure
of a triplet of nodes to form a triangle is supposed to be
a driving force of social networks evolution [20, 31].
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The task of listing triangles may seem simple, but
web crawlers and social platforms generate graphs that
are so large that scalability becomes a challenge. Thus,
a lot of effort has been dedicated to efficient in-memory
triangle listing. Note that methods exist for graphs
that do not fit in main memory: some use I/O-efficient
accesses to the disk [11], while others partition the graph
and process each part separately [4]. However, such
approaches induce a costly counterpart that makes them
much less efficient than in-memory listing methods. It is
also worth noticing that exact or approximate methods
designed for triangle counting [3, 35, 16] can generally
not be adapted to triangle listing.

An efficient algorithm for triangle listing has been
proposed early on in [9]. Based on the observation that
real-world graphs generally have a heterogeneous degree
distribution, later contributions [29, 18] showed how
ordering vertices by degree or core value accelerates the
listing. Such orderings create an orientation of edges so
that nodes that are costly to process are not processed
many times. A unifying description of this method
has been proposed in [25] and it has been successfully
extended to larger cliques [12, 22, 33]. However, only
degree and core orderings have been exploited, but their
properties are not specifically tailored for the triangle
listing problem. Other types of orderings benefited
other problems such as graph compression [7, 13] or
cache optimization [37, 19]. The main purpose of this
work is thus to find a general method to design efficient
vertex orderings for triangle listing.

1.2 Contributions. In this work, we show how ver-
tex ordering directly impacts the running time of the
two fastest existing triangle listing algorithms. First,
we introduce cost functions that relate the vertex or-
dering and the running time of each algorithm. We
prove that finding an optimal ordering that minimizes
either of these costs is NP-hard. Then, we expose a
gap in the combinations of algorithm and ordering con-
sidered in the literature, and we bridge it with three
heuristics producing orderings with low corresponding
costs. Our heuristics reach a compromise between their
running time and the quality of the ordering obtained,
in order to address two distinct tasks: listing triangles
with or without taking into account the ordering time.
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Finally, we show that our resulting combinations of algo-
rithm and ordering outperform state-of-the-art running
times for either task. We release an efficient open-source
implementation [1] of all considered methods.

Section 2 presents state-of-the-art methods to list
triangles. In Section 3, we analyze the cost induced
by a given ordering on these algorithms and propose
several heuristics to reduce it; the proofs of NP-hardness
are available in the full version [2]. The experiments of
Section 4 show that our methods are efficient in practice
and improve the state of the art.

1.3 Notations. We consider an unweighted undi-
rected simple graph G = (V,E) with n = |V | vertices
and m = |E| edges. The set of neighbors of a ver-
tex u is denoted Nu = {v, {u, v} ∈ E}, and its degree
is du = |Nu|. An ordering π is a permutation over
the vertices that gives a distinct index πu ∈ J1, nK to
each vertex u. In the directed acyclic graph (DAG)
Gπ = (V,Eπ), for {u, v} ∈ E, Eπ contains (u, v) if
πu < πv, and (v, u) otherwise. In such a directed graph,
the set Nu of neighbors of u is partitioned into its pre-
decessors N−u and successors N+

u . We define the in-
degree d−u = |N−u | and the outdegree d+u = |N+

u |; their
sum is d−u + d+u = du. A triangle of G is a set of ver-
tices {u, v, w} such that {u, v}, {v, w}, {u,w} ∈ E. A
k-clique is a set of k fully-connected vertices. The core-
ness cu of vertex u is the highest value k such that u
belongs to a subgraph of G where all vertices have de-
gree at least k; the core value or degeneracy c(G) of G
is the maximal cu for u ∈ V . A core ordering π verifies
πu ≤ πv ⇔ cu ≤ cv. Core value and core ordering can
be computed in linear time [5].

2 State of the art

2.1 Triangle listing algorithms. Ortmann and
Brandes [25] have identified two families of triangle
listing algorithms: adjacency testing, and neighbor-
hood intersection. The former sequentially consid-
ers each vertex u as a seed, and processes all pairs
{v, w} of its neighbors; if they are themselves adjacent,
{u, v, w} is a triangle. Algorithms tree-lister [17],
node-iterator [29] and forward [29] belong to this
category. In contrast, the neighborhood intersection
family methods sequentially considers each edge (u, v)
as a seed; each common neighbor w of u and v forms
a triangle {u, v, w}. Algorithms edge-iterator [29],
compact-forward [18] and K3 [9] belong to this cat-
egory, as well as some algorithms that list larger
cliques [23, 12, 22].

In naive versions of both adjacency testing and
neighborhood intersection, finding a triangle (u, v, w)
does not prevent from finding triangle (v, w, u) at a

u

v

w

S1

L

S2

Figure 1: Directed triangle with the unified notations
proposed in [25]. The edges are directed according to
an ordering π such that πu < πv < πw.

later step. The above papers avoid this unwanted
redundancy by using an ordering, explicitly or not. We
use the framework developed in [25]: a total ordering
π is defined over the vertices, and the triple (u, v, w)
is only considered a valid triangle if πu < πv < πw.
This guarantees that each triangle is listed only once:
as illustrated in Figure 1, vertices in any triangle of the
DAG Gπ appear in one and only one of 3 positions: u is
first, v is second, w is third; the same holds for edges: L
is the long edge, and S1 and S2 are the first and second
short edges. It leads to 3 variants of adjacency testing
(seed vertex v or w instead of u) and of neighborhood
intersection (seed edge L or S2 instead of S1).

Choosing the right data-structure is key to the per-
formance of algorithms. All triangle listing algorithms
have to visit the neighborhoods of vertices. Using hash
table or binary tree to store them is very effective: they
respectively allow for constant and logarithmic search
on average. However, because of high constants, they
are reportedly slow in terms of actual running time [29].
A faster structure is the boolean array used in K3 for
neighborhood intersection. It registers the elements of
N+
u in a boolean table B so that, for each neighbor v of

u, it is possible to check in constant time if a neighbor
w of v is also a neighbor of u. This is the structure used
by the fastest methods [25, 12].

In the rest of this paper, we therefore only consider
triangle listing algorithms that use neighborhood inter-
section and a boolean array. We present the two that
we will study in Algorithms 1 and 2 with the notations
of Figure 1 for the vertices. They initialize the boolean
array B to false (line 1), consider a first vertex (line 2)
and store its neighbors in B (line 3); then, for each of its
neighbors (line 4), they check if their neighbors (line 5)
are in B (line 6), in which case the three vertices form
a triangle (line 7). B is reset (line 8) before continuing
with the next vertex. The Algorithm 1 corresponds to
L+n in [25]; we call it A++ because of the two “+” (re-
ferring to out-degrees) involved in its complexity. The
Algorithm 2 corresponds to S1+n in [25]; we call it A+- 1.

1A third natural variant exists: A-- or S2+n. We ignore it here
since its complexity is equivalent to the one of A++.
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Algorithm 1 – A++ (or L+n)

1: for each vertex v do B[v]← False

2: for each vertex w do
3: for v ∈ N−w do B[v]← True

4: for u ∈ N−w do
5: for v ∈ N+

u do
6: if B[v] then
7: output triangle{u, v, w}
8: for v ∈ N−w do B[v]← False

Complexity:

Θ
(
m+

∑
(u,w)∈Eπ

d+u

)
= Θ

(∑
u∈V

d+u
2
)

Algorithm 2 – A+- (or S1+n)

1: for each vertex w do B[w]← False

2: for each vertex u do
3: for w ∈ N+

u do B[w]← True

4: for v ∈ N+
u do

5: for w ∈ N+
v do

6: if B[w] then
7: output triangle{u, v, w}
8: for w ∈ N+

u do B[w]← False

Complexity:

Θ
(
m+

∑
(u,v)∈Eπ

d+v

)
= Θ

(
m+

∑
v∈V

d+v d
−
v

)

Their complexities are given in Property 2.1. Since they
depend on the indegree and outdegree of vertices, the
choice of ordering will impact the running time of the
algorithms.

Property 2.1. (Complexity of A++ and A+-) The

time complexity of A++ is Θ(
∑
u∈V d

+
u
2
). The time

complexity of A+- is Θ
(
m+

∑
v∈V d

+
v d
−
v

)
.

Proof. In both algorithms, the boolean table B requires
n initial values, m set and m reset operations, which
is Θ(m) assuming that n ∈ O(m). In A++, a given
vertex u appears in the loop of line 4 as many times
as it has a successor w; every time, a loop over each of
its successors v is performed. In total, u is involved in
Θ(d+u

2
) operations. Similarly, in A+-, a given vertex

v appears in the loop of line 4 as many times as it
has a predecessor u; every time, a loop over each of
its successors w is performed. In total, v is involved
in Θ(d+v d

−
v ) operations. The term m is omitted in the

complexity of A++ as
∑
u∈V d

+
u
2 ≥

∑
u∈V d

+
u = m, but

not in A+- as
∑
v∈V d

+
v d
−
v can be lower than m.

2.2 Orderings and complexity bounds. Ort-
mann and Brandes [25] order the vertices by non-
decreasing degree or core value. In their experimental
comparison, they test several algorithms as well as A++

and A+-, each with degree ordering, core ordering, and
with the original ordering of the dataset. They conclude
that the fastest method is A++ with core or degree or-
dering: core is faster to list triangles when the ordering
is given as an input, and degree is faster when the time
to compute the ordering is also included.

Danisch et al. [12] also use core ordering in the
more general problem of listing k-cliques. For triangles
(k = 3), their algorithm is equivalent to A+-, and they
show that using core ordering outperforms the methods

of [9, 18, 23].
With these two orderings, it is possible to obtain

upper-bounds for the time complexity in terms of graph
properties. Chiba and Nishizeki [9] show that K3

with degree ordering has a complexity in O(m · α(G)),
where α(G) is the arboricity of graph G. With core
ordering, node-iterator-core [29] and kClist [12]
have complexity O(m · c(G)), where c(G) is the core
value of graph G. These bounds are considered equal
in [25], following the proof in [38] that α(G) ≤ c(G) ≤
2α(G) − 1. However, we focus in this work on the
complexities expressed in Algorithms A++ and A+- as
we will see that they describe the running time more
accurately.

3 New orderings to reduce the cost of
triangle listing

3.1 Formalizing the cost of triangle listing al-
gorithms. In this section, we discuss how to design
vertex orderings to reduce the cost of triangle listing al-
gorithms. For this purpose, we introduce the following
costs that appear in the complexity formulas of Algo-
rithms 1 and 2. Recall that the initial graph is undi-
rected and that the orientation of the edges is given by
the ordering π, which partitions neighbors into succes-
sors and predecessors.

Definition 1. (Cost induced by an ordering)
Given an undirected graph G, the costs C++ and C+−

induced by a vertex ordering π are defined by:

C++(π) =
∑
u∈V

d+u d
+
u C+−(π) =

∑
u∈V

d+u d
−
u

The fastest methods in the state of the art are
A++ with core or degree ordering [25], and A+- with
core ordering [12]. The intuition of both orderings is
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that high degree vertices are ranked after most of their
neighbors in π so that their outdegree in Gπ is lower.
This reduces the cost C++, which in turn reduces the
number of operations required to list all the triangles
as well as the actual running time of A++. In [25], it is
mentioned that core ordering performs well with A+- as
a side effect.

To our knowledge, no previous work has designed
orderings with a low C+− cost and used them with
A+-. We will show that such orderings can lower the
computational cost further. Yet, optimizing C+− or
C++ is computationally hard because of Theorem 3.1:

Theorem 3.1. (NP-hardness) Given a graph G =
(V,E), it is NP-hard to find an ordering π on V that
minimizes C+−(π) or that minimizes C++(π).

Proof. For the hardness of C+−, a proof has been
proposed online [28] but never published as far as we
know. In the full version of this paper [2], we give a new
simpler proof for the hardness of C+−, and we prove the
result for C++.

3.2 Distinguishing two tasks for triangle listing.
Triangle listing typically consists of the following steps:
loading a graph, computing a vertex ordering, and
listing the triangles. Time measurements in [18, 12, 22]
only take the last step into account, while [29, 25]
also include the other steps. We therefore address two
distinct tasks in our study: we call mere-listing the
task of listing the triangles of an already loaded graph
with a given vertex ordering; we call full-listing the
task of loading a graph, computing a vertex ordering,
and listing its triangles.

In the rest of the paper, we use the notation task-
order-algorithm: for instance, mere-core-A+- refers to
the mere-listing task with core ordering and algorithm
A+-. Using this notation, the fastest methods identified
in the literature are mere-core-A+- in [12], mere-core-
A++ and full-degree-A++ in [25]. We use all three
methods as benchmarks in our experiments of Section 4.

Studying both tasks gives a better understanding of
the phenomena at play in the speed of triangle listing.
On an algorithmic point of view, mere-listing shows the
impact that orderings can have on the cost of triangle
listing. As the ordering time is not taken into account,
a long time can be spent on finding an ordering with
low cost. This also represents the situation when the
dataset is then distributed to other users or used several
times; for instance, in a recommendation system that
requests graph motif enumeration on the fly, finding
an efficient ordering once accelerates each subsequent
query. On the practical side, full-listing represents the
runtime for one execution: it favors quickly obtained

orderings even if their induced cost is not the lowest.
These differences lead to a time-quality trade-off for
cost-reducing heuristics.

3.3 Reducing C+− along a time-quality trade-
off. We remind that two efficient algorithms are identi-
fied in the literature for triangle listing (see Algorithms 1
and 2). Their number of operations are respectively
C++ and C+−. However, the orderings that have been
considered (degree and core) induce a low C++ cost,
but not necessarily a low C+− cost.

Our goal here is therefore to design a procedure that
takes a graph as input and produces an ordering π with
a low induced cost C+−(π). Because of Theorem 3.1,
finding an optimal solution is not realistic for graphs
with millions of edges. We therefore present three
heuristics aiming at reducing the C+− value, exploring
the trade-off between quality in terms of C+− and
ordering time.

3.3.1 Neigh heuristic. We define the neighborhood
optimization method, a greedy reordering where each
vertex is placed at the optimal index with respect to its
neighbors, as illustrated in Figure 2. First, notice that
changing an index πu only affects C+−(π) if the position
of u with respect to at least one of its neighbors changes;
otherwise the in- and outdegrees of all vertices remain
unchanged. Starting from any ordering π, the algorithm
described in Algorithm 3 considers each vertex u one
by one (line 3) and, for each p ∈ J1, duK, it computes
C+−(p), the value of C+− when u is just after its p-th
neighbor in π, as well as C+−(0) when u is before all its
neighbors. The position p∗ that induces the lowest value
of C+− is selected (line 5) and the ordering is updated
(line 6). The process is repeated until C+− reaches
a local minimum, or until the relative improvement is
under a threshold ε (last line). The resulting π induces
a low C+− cost.

For a vertex u, sorting the neighborhood according
to π takes O(du log du) operations; finding the best

Algorithm 3 Neighborhood optimization (Neigh
heuristic)

Input: graph G, initial ordering π, threshold ε ≥ 0
1: repeat
2: C0 = C+−(π)
3: for each vertex u of G do
4: sort Nu according to π
5: p∗ = argminp∈J0,duK {C+−(p)}
6: update ordering π to put u in position p∗
7: while C+−(π) < (1− ε) · C0
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a

b
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d

e

f

g

a b c d e f g

a

b

c

d

e

f

g

b c d e a f g

Figure 2: Example of update in the Neigh heuris-
tic: vertex a is moved to a position among its neighbors
that induces the lowest cost. The tables indicates how
the ordering is updated. The edges in the DAG that
are reoriented accordingly are dashed. Here, the order-
ing at the top has C+− = 9 while the ordering at the
bottom has C+− = 6. For this graph, the optimal C+−

cost is 3 (with ordering e, g, f, a, c, d, b).

position takes Θ(du) because it only depends on the
values d+v and d−v of each neighbor v of u. With a
linked list, π is updated in constant time. If ∆ is the
highest degree in the graph, one iteration over all the
vertices thus takes O(m log ∆), which leads to a total
complexity O(Im log ∆) if the improvement threshold
ε is reached after I iterations. Notice that on all the
tested datasets the process reaches ε = 10−2 after less
than ten iterations.

This heuristic has several strong points: it can be
used for other objective functions, for instance C++; it
is greedy, so the cost keeps improving until the process
stops; if the initial ordering already induces a low C+−

cost, the heuristic can only improve it; it is stable
in practice, which means that starting from several
random orderings give similar final costs; and we show
in Section 4 that it allows for the fastest mere-listing.

In spite of its log-linear complexity, this heuristic
can take longer than the actual task of listing triangles
in practice, which is an issue for the full-listing task. We
therefore propose the following faster heuristics in the

case of the full-listing task.

3.3.2 Check heuristic. This heuristic is inspired by
core ordering, where vertices are repeatedly selected
according to their current degree [5]. It considers all
vertices by decreasing degree and checks whether it is
better to put a vertex at the beginning or at the end of
the ordering. More specifically, π is obtained as follows:
before placing vertex u, let Vb (resp. Ve) be the vertices
that have been placed at the beginning (resp. at the
end) of the ordering, and V? those that are yet to place.
The neighbors of u are partitioned in Nb = Nu ∩ Vb,
Ne = Nu ∩ Ve and N? = Nu ∩ V?. We consider two
options to place u: either just after the vertices in
Vb (πu = |Vb| + 1), or just before the vertices in Ve
(πu = n − |Ve|). In either case, u has all vertices of
Nb as predecessors, and all vertices of Ne as successors.
In the first case, vertices in N? become successors,
which induces a C+− cost Cb = |Nb| · (|Ne| + |N?|).
In the second, the cost is Ce = (|Nb| + |N?|) · |Ne|.
The option with the smaller cost is selected. Sorting
the vertices by degree requires O(n) steps with bucket
sort. Maintaining the sizes of Nb, Ne, N? for each
vertex requires one update for each edge. Therefore,
the complexity is O(m + n), or O(m) assuming that
n ∈ O(m).

3.3.3 Split heuristic. Finally, we propose a heuris-
tic that is faster to achieve but compromises on the
quality of the resulting ordering. Degree ordering has
been identified as the best solution for mere-listing with
algorithm-A++ [25]. We adapt it for C+− by splitting
vertices alternatively at the beginning and at the end
of the ordering π. More precisely, a non-increasing de-
gree ordering δ is computed, then the vertices are split
according to their parity: if u has index δu = 2i + 1
then πu = i+ 1; if δu = 2i, then πu = n+ 1− i. Thus,
high degree vertices will have either few predecessors or
few successors, which ensures a low C+− cost. With the
graph of Figure 2, supposing that we start from the non-
decreasing degree ordering (e, b, g, a, f, d, c), which has
C+− = 7, the Split method leads to (e, g, f, c, d, a, b),
which has C+− = 4. The complexity of this method is
in O(n) like the degree ordering.

4 Experiments

4.1 Experimental setup.

4.1.1 Datasets. We use the 12 real-world graphs
described in Table 1. As this work focuses on in-
memory triangle listing in large graphs, we selected
networks that have between ten million and two billion
edges and can therefore be loaded in the RAM of a
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standard machine. These datasets are standard for
evaluating graph algorithms on real-world data: most
of them appear in the experiments of [25, 12] and are
provided by widely-used graph collections [21, 27], while
larger webgraphs come from [7]. All the tested networks
are included in the experimental results below. Loops
have been removed and the directed graphs have been
transformed into undirected graphs by keeping one edge
when one existed in either or both directions.

Table 1: Datasets used for the experiments, ranked
by number of edges. They represent either web networks
F, social networks N or citation networks �.

dataset [source] vertices edges triangles
skitter F[21] 1,696,415 11,095,298 28,769,868
patents �[21] 3,774,768 16,518,947 7,515,023
baidu F[27] 2,141,301 17,014,946 25,207,196
pokec N[21] 1,632,804 22,301,964 32,557,458
socfba N[27] 3,097,166 23,667,394 55,606,428

LJ N[21] 4,036,538 34,681,189 177,820,130
wiki F[21] 2,070,486 42,336,692 145,707,846
orkut N[21] 3,072,627 117,185,083 627,584,181

it F[7] 41,291,318 1,027,474,947 48,374,551,054
twitter N[7] 41,652,230 1,202,513,046 34,824,916,864

friendster N[21] 124,836,180 1,806,067,135 4,173,724,142
sk F[7] 50,636,151 1,810,063,330 84,907,041,475

4.1.2 Software and hardware. We release a uni-
form open-source implementation [1] of A++ and A+- al-
gorithms, as well as the different ordering strategies that
we discussed in Section 3. The code is in c++ and com-
piles with gnu make 4 and g++ 8.2 with optimization
flag Ofast and openmp for parallelisation. We run all
the programs on a sgi ub2000 intel xeon e5-4650L

@2.6 GHz, 128Gb ram with linux suse 12.3.
Our implementation of either triangle listing algo-

rithm can run in parallel because each iteration of the
main loop is independent from the others. Among or-
derings however, only degree and Split are easily par-
allelizable; to be consistent, we use a single thread to
compare the different methods. Moreover, the goal of
this work is to evaluate the impact of different methods
on the speed of triangle listing, which is more straight-
forward to observe with a single thread.

Regarding the state of the art, the most competitive
implementation available for triangle listing is kClist

in c [12], which has already been shown to outperform
previous programs [23, 18]. It lists k-cliques using a core
ordering and a recursive algorithm that is equivalent
to A+- for k = 3. We compared our implementation
to kClist in various settings and found that ours is
14% faster on average, presumably because it does not
use recursion. Moreover, the paper that identified core-
A++ and degree-A++ as the fastest methods [25] does not
provide the corresponding code. Therefore, we only use
our own implementation of A+- and A++ in the rest of

this paper: we exclusively focus on the speedup caused
by the vertex ordering, separating it from the speedup
originating from the implementation.

4.2 Cost and running time are linearly corre-
lated. In order to show that the cost functions C++

and C+− are good estimates of the running time, we
measure the correlation between the running time of
mere-listing and the corresponding cost induced by var-
ious orderings (core, degree, our heuristics, but also
breadth- and depth-first search, random ordering, etc).
In Figure 3, we see that the running time for a given
dataset correlates almost linearly to the corresponding
cost: the lines represent linear regressions. The figure
only presents some of the datasets for readability; the
correlation is above 0.85 on all the datasets, with a me-
dian of 0.988. Note that fluctuations in running times
(due for instance to hardware constraints) cause an im-
perfect correlation between the executions. Ultimately,
the execution time of a listing algorithm is almost a lin-
ear function of the cost induced by the ordering, which
is why reducing this cost actually improves the running
time, as we will see.

108 109 1010 1011
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LJ (r = 0.871)
orkut (r = 0.963)
skitter (r = 0.997)
socfba (r = 0.942)
wiki (r = 0.998)

A++
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Cost induced by the ordering (C + +  or C + )
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Figure 3: Algorithm running time vs the cost
induced by the ordering. Each mark represents
an ordering: circles are for cost C+− and algorithm
A+-, squares are for cost C++ and algorithm A++.
Each color represents a dataset: the line of linear
regressions and associated correlation coefficients r show
the proportionality between cost and time.

4.3 Neigh outperforms previous mere-listing
methods. We compare our methods to the state of
the art for mere-listing (core-A+- in [12] and core-
A++ in [25]) and for full-listing (degree-A++ in [25]) in
Figure 4. The top charts present the running time of the
three state-of-the-art methods for all datasets, for the
mere-listing task (left) and the full-listing task (right).
We can see that there is no clear winner for mere-listing:
both A++ methods have a very similar duration, but
core-A+- can be between 1.4 times faster and 2.4 times
slower depending on the dataset. This explains why [25]
and [12] did not agree on the fastest method.
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Figure 4: Comparison of state-of-the-art methods and speedup of our methods. The top charts show
the runtime of the three state-of-the-art methods; depending on the dataset, the fastest method is not always
the same. The bottom charts show the speedup of our three methods against the fastest existing method of
each dataset. On the left, for mere-listing, we see that our three heuristics consistently outperform the three
state-of-the-art methods, and that Neigh or Check are the fastest. On the right, for full-listing, Neigh is not
efficient but Split is always faster than existing methods and Check is faster on bigger datasets.

On the other hand, our heuristics Neigh, Check
and Split manage to produce orderings significantly
lower C+− costs. This translates directly into short
running times for mere-listing with A+-. To compare
our contributions with the state of the art, we take for
each dataset the fastest of the three existing methods.
The bottom left chart of Figure 4 shows the speedup
of our methods compared to the fastest existing one.
Exact runtimes of the best existing and of the methods
proposed in this work are reported in Table 2.

The main result is that Neigh-A+- is always faster
than the best previous method. The speedup is 1.38 on
average and ranges from only 1.02 on twitter to 1.71 on
the it dataset. Check -A+- is almost as good, with a 1.32
average speedup ranging from 1.10 to 1.60; it is even
faster than Neigh-A+- on two of the datasets. Split-A+-
is a little slower, which is expected because this ordering
is designed to be obtained quickly and does not reduce
C+− as efficiently as our other heuristics. However it
still consistently outperforms all the previous methods,
with a 1.20 average speedup.

mere-listing full-listing
dataset existing this paper existing this paper

skitter 1.00s 0.71s 1.91s 1.75s
patents 2.40s 1.67s 5.71s 5.15s

baidu 3.68s 2.87s 6.38s 5.77s
pokec 4.87s 3.44s 7.91s 7.21s

socfba 5.52s 3.98s 8.92s 7.79s

LJ 6.23s 4.79s 10.91s 9.88s
wiki 10.82s 8.22s 16.23s 15.65s

orkut 42.11s 33.09s 57.47s 51.60s
it 3m13 1m53 4m09 2m45

twitter 12m31 11m20 15m21 14m08

friendster 42m36 30m31 55m47 48m13
sk 5m10 3m06 6m47 4m31

Table 2: Duration of triangle listing of existing
methods against methods of this paper. For each
dataset, we compare the fastest state-of-the-art method
against the fastest of our methods. Recall that mere-
listing only takes into account the runtime of the listing
algorithm (A++ or A+-) while full-listing also counts the
graph loading time and the ordering time.
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4.4 Split outperforms previous full-listing
methods. For full-listing, the top right chart of Fig-
ure 4 compares the three state-of-the-art methods and
shows that degree-A++ is the fastest for almost all
datasets. This result is consistent with the result re-
ported in [25], that specifically addresses full-listing.
The bottom right chart shows the speedup of our
three methods compared to the fastest state-of-the-art
method. Note that the Neigh heuristic is not competi-
tive here (speedup under one) since its ordering time is
long compared to other methods.

The main result is that Split-A+- is always faster
than previous methods. The speedup compared to
existing methods is 1.16 on average, and it ranges from
1.04 on wiki to 1.50 on it dataset. Check also gives very
good results: on medium datasets, it is a bit slower
than degree-A++, but it outperforms all state-of-the-art
methods on large datasets (it, twitter, friendster, sk),
and it even beats Split on three of them. This hints
at a transition effect: the Check ordering has a lower
C+− value but it takes O(m) steps to compute, while
Split only needs O(n); for larger datasets, the listing
step prevails, so the extra time spent to compute Check
becomes profitable.

Conclusion

In this work, we address the issue of in-memory trian-
gle listing in large graphs. We formulate explicitly the
computational costs of the most efficient existing algo-
rithms, and investigate how to order vertices to mini-
mize these costs. After proving that the optimization
problems are NP-hard, we propose scalable heuristics
that are specifically tailored to reduce the costs induced
by the orderings. We show experimentally that these
methods outperform the current state of the art for both
the mere-listing and the full-listing tasks.

Preliminary investigation indicates that the mere-
listing step takes more importance as graphs grow
larger, which hints that our listing methods would be all
the more efficient for future, larger datasets. Moreover,
full-listing includes the time spent to load the graph and
to compute the ordering; these two tasks can hardly
be accelerated, as the complexity of Split is linear in
the number of nodes of the graph. For this reason,
we think that improving triangle listing will require to
find orderings that are fast to compute and that further
accelerate the mere-listing step.

A natural extension of this work is to use similar
vertex ordering heuristics in the more general case of
clique listing. Formulating appropriate cost functions
for clique listing algorithms is not straightforward and
requires studying precisely the different possibilities to
detect all the vertices of a clique.
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